
1

Ruth Malan
Bredemeyer Consulting

Architecture
Principles

March 2025

2

Attribution — All quotes used in this material, belong to their sources. For original work herein, you
must give appropriate credit, provide a link to this material, and indicate if changes were made. You
may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use. Only noncommercial uses of the work are permitted. Adaptations must be shared under the
same terms

 Technical Leadership Workshops

 Remote:
• May 8 and 15, 2024, 12pm-3pm Eastern Time (US/Canada).

 System Design and Software Architecture Workshops

 Remote:
• May 12-14 and May 19-20, 11am-3:30pm Eastern Time

(US/Canada).

 See ruthmalan.com and https://ti.to/bredemeyer/ for schedule and
more information.

3

discourse (n.): late 14c.,
"process of understanding,
reasoning, thought,"

We Are Here

Business
Strategy
Business
Strategy

Product
Design
Product
Design

Fitness
Properties

Fitness
Properties

Platform
Design

Platform
Design

Engineering
Strategy

Engineering
Strategy

Conceptual
Architecture
Conceptual
Architecture

Execution
Architecture
Execution

Architecture

Logical
Architecture

Logical
Architecture

Engineering Strategy

Conceptual Architecture

Execution Architecture

Logical Architecture

Business Strategy

Product Design

Fitness Properties

Platform Design

SYSTEM
DESIGN

 Ecosystems or ecologies of (sociotechnical)
systems, plays a role in business and product
strategy. This strategy determines where we will
play or compete in the ecosystem, how we will
create unique, differentiating value (within our org,
to other partners, and to customers) so we can
survive and even thrive. Situation understanding or
competitive landscape understanding, therefore,
means we need to understand this landscape -- the
ecosystem(s) we play in, and how the capabilities
(we compose into systems) offer unique and
compelling value. etc. These are techno-economic,
value exchanging ecologies of interacting socio-
technical systems. Add too, political forces and
geopolitical factors.

Technical or Engineering Strategy
 Ecosystems also play a role, as we consider what
capabilities we will build internally, to be viable as a
complex (open) system, with the capabilities that
enable us to play the roles the org is striving to
play, in the ecosystems of broader value flows and
transformations. For example, microservices rely
not only on architectural approaches to
decomposing the system and mechanisms for
coherence and integrity despite the challenges
posed by distributed systems, but also on
development infrastructure for automated builds
and continuous delivery (like Puppet and Chef), and
the infrastructure of containers and orchestration
tools (like Kubernetes). Our engineering strategy
identifies and addresses the over-arching
challenges we face, and the capabilities we need to
build.

4

What is Strategy?
 For Rumelt, strategy contains
three elements:

 1) a diagnosis

 2) a guiding policy

 3) coherent action

STRATEGY

situation awareness

response

coherent in good part
because we have a basis for
coherence

 Strategy asks: what’s going on? And what are we going to
do?

 “At a minimum, a diagnosis names or classifies the
situation [..] suggesting more attention be paid to some
issues and less to others. An especially insightful diagnosis
can transform one’s view of the situation, bringing a
radically different perspective to bear. [..] An explicit
diagnosis permits one to evaluate the rest of the strategy.
Additionally, making the diagnosis an explicit element of
strategy allows the rest of the strategy to be revisited and
changed as circumstances change.” (Richard Rumelt)

 We talked about “chicken and egg” problems as an
example of diagnosing a situation (in scaling the startup
phases or eXploreeXpand in Beck’s 3X). We might also
want to think about how we gain momentum for an
architectural shift (say, as we move from scaling to scope
and need to recover from technical debt, or shift to a new
S-curve). Even when we have senior executive support,
that’s not enough; organizational change needs new
capabilities and practices. Are we enabling those?
Understanding of why? Time to learn? A culture that
supports learning?

Strategy: Diagnosis, Guiding Policy, aaand Action!

“Drawing the map: [..]
observed that great leaders
recognize an issue before it
becomes an emergency. They
consistently map the
changing dynamics of the
company’s environment and
create a clear, prioritized
vision for where the business
should be headed.”

— B Tom Hunsaker and
Jonathan Knowles

5

What is Engineering Strategy?
 Translation of business
strategy into engineering
strategy

 Addresses strategically
significant business or
engineering challenges

ENGINEERING
STRATEGY

 Strategy is fractal. Strategy at one level creates context for strategy
at a more local, focused, level. But what does that mean for
engineering or technology strategy and architects? We’ve explored
business and product strategy with the notion that even if we
(architects or other technical leaders and designers) aren’t in the
room where the strategy happens, we need to understand the value
networks we contribute value to, and interact within, and
understand how we differentiate and how we expect to do so as
trends unfold and the ecosystem shifts and reshapes. Strategy
identifies focus: what is important (high stakes) and what the
associated challenges are (Rumelt). It includes what capabilities we
are building and integrating with, and these have technology
implications (Wardley).

 Engineering Strategy (or Technical Strategy) translates this attention
and strategic orientation to the technical sphere: what is important
and what are the challenges? What’s happening in the technical
ecosystems we leverage, use, build on? What is the internal
technology landscape, and how is it evolving, and what challenges
do we need to address as matters of strategic import? What are the
shaping forces (internally and in the broader tech ecosystem)? How
will build-evolve the systems our business strategy relies on?

Engineering Strategy
(or Technical Strategy or Architecture Strategy) “Strategy is about what is

important and the
challenges you face. If one
of these challenges is that
the organization is
dysfunctional, then that’s
strategic. If your
managers are not
managing properly, if the
organization lacks the
resilience it needs for the
business it’s in, that is a
strategic issue.”

— Richard Rumelt

 Source: Why bad strategy is a ‘social
contagion’, Richard Rumelt
interviewed by Yuval Atsmon

 Engineering strategy translates business strategy into
technical direction and addresses key engineering challenges

6

Architecture Principles
Interrogatives As
Structuring Device
Principles:
• What?
• Why?
• How?
• Show me!
• Who?
• How, who,

when, where?

Principles: what?
• Principles, in principle
• Principled principles
• Guiding principles
• Architecture principles: building
• Architecture principles: systems
• Governing the system, guiding

designers, and design of design

Principles: why?
• System integrity
• Strategic intent

Principles: how?
• Template
• But seriously, how?

Principles: show me!
• Off-the-shelf
• Some classics
• Recent? Relevant…
• Try it: dependency isolation
• Try it: resilience
• Try it!

Principles: how, who, when, where
• Strategy: diagnosis and guiding

policy
• Integrity, common ground and

framing intent
• Workshopping principles

 Architecture principles are decisions that set direction, rule
sets of decisions out, shape our actions, guide our work so we
bring experience and coherent action to bear and achieve
more the outcomes we intend. Well, that packs in a lot, so
over the next pages we’ll explore more what we mean and
what the implications are.

 This work builds on (and replaces) the previous iteration:
https://ruthmalan.com/ByTopic/architecture/202102Architectu
rePrinciples.pdf

Principles and What’s Ahead

 Principles shaping what’s ahead

“I love thinking about the
word DECISION through
the lens of “what am I
cutting off?”
It causes me a bit of a pause
because in choosing a path
of action, I’m not choosing
other paths of action (at
least at that time)

— Eb Ikonne

Architecture Principles, by Ruth Malan, 2025

7

Principles: what?
Principles: what?
• Principles, in

principle
• Principled principles
• Guiding principles
• Architecture

principles
• Architecture

principles
• Governing the

system, guiding
designers, and
design of design

 Alas, it’s not in the
dictionary. Well,
not this one:

Source: https://https://www.thefreedictionary.com/principle

 TheFreeDictionary

 Principle has a range of meanings, including:
• law concerning the functioning of natural phenomena

or mechanical processes ("the principle of jet
propulsion” or “Archimedes principle, relating buoyancy
to the weight of displaced water”)

• maxim in philosophy or ethics: a moral rule; often
pedagogical and motivates or guides specific actions

• guiding principle (of substantive influence when making
a decision or considering a matter)

• rule or predetermined policy or mode of action.

 Two that stand out (from Cambridge.org):
• a rule or belief that influences your behaviour and which

is based on what you think is right
• a basic idea or rule that explains or controls how

something happens or works

 And then there’s in principle. “If you agree with something
in principle, you agree in general terms to the idea of it,
although you do not yet know the details or know if it will
be possible.”

 We’ll agree, in principle, that architecture or design
principles are useful, even if there are differences in
whether they establish guidance (informs and influences)
or rules (musts; official policy) to be followed.

Principles

 For us, a (design) principle guides (design)
decisions and actions

Module from System Design and Software Architecture, by Ruth Malan, 2025

 Various sources including Wikipedia, Collins
Dictionary, Cambridge Dictionary and
American Heritage Dictionary

“one of the fundamental
tenets or doctrines of a system,
a law or truth on which others
are founded”

— etymonline.com

Principles as inherent laws
Principles as imposed laws
Principles as guidelines

8

Principled Principles
 Principles behind the Agile Manifesto

 We follow these principles:

 Our highest priority is to satisfy the customer
through early and continuous delivery of
valuable software.

Source: https://agilemanifesto.org/

Principles: what?
• Principles, in

principle
• Principled principles
• Guiding principles
• Architecture

principles

 Welcome changing
requirements, even late in
development. Agile processes
harness change for the
customer's competitive
advantage.

principles

values

 Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.
 Business people and developers must work together daily
throughout the project.
 Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.
 The most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation.
 Working software is the primary measure of progress.
 Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant
pace indefinitely.
 Continuous attention to technical excellence and good design
enhances agility.
 Simplicity—the art of maximizing the amount of work not
done—is essential.
 The best architectures, requirements, and designs emerge from
self-organizing teams.
 At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

“the guiding practices
that support teams in
implementing and
executing with agility”

Principles behind the Agile Manifesto (continued)

 Source: https://agilemanifesto.org/

 Source:
https://www.agilealliance.org/

 “a rule or belief that influences your behaviour
and which is based on what you think is right”

“Principles unpack the
values underlying them
more concretely so that
the values can be more
easily operationalized in
policy statements and
actions.”

—Wikipedia

9

Guiding Principles
 Bud Caldwell’s Rules and
Things:

 “No. 83: If an adult tells
you not to worry, and you
weren't worried before,
better hurry up and start
'cause you're already
running late.”

Principles: what?
• Principles, in

principle
• Principled principles
• Guiding principles
• Architecture

principles (yes, the
other kind)

Rules, Heuristics, Principles

 Relating guidance to contexts, to shape
future behavior

Drawing out that parallel is playful. But it is worth
noting the structure of Bud’s rules: they give a
context, and guidance to his future self, when that
situation arises.

Bud, Not Buddy is a children’s story about a boy
who sets out across Depression era America to
find his father after his mother has died. The
relevance to our discussion here, is that based on
his experiences and situations, Bud extracts “rules”
to help him through situations down the road.
He’s looking for what helps him cope, or saves
him from harm, including being misled into hope
and trust when that’s worked out badly for him.
So these are his “rules” and they could be rules of
thumb (heuristics) or rules he tries to hold himself
too. They are propositions that will serve to guide
his behavior. He’s looking for ways to make his
(encounters with) world less erratic, and more
navigable.

His Rule #3

“If you got to tell a lie, make sure it's simple and
easy to remember.”

has echoes in guidance on naming architecture
principles; make them:

 Clear, precise, and easy to remember.

Rule #29 is "When You Wake Up and
Don't Know for Sure Where You're.
At and There's a Bunch of people
Standing Around You. It's Best to
pretend You're Still Asleep, Until You
Can Figure Out What's Going On
and What You Should Do.”

— Bud’s Rules and Things
Christopher Paul Curtis

 But… relevance? To us??

10

Gothic Architecture
 Gothic cathedrals (late 12th
century to the 16th century)
are characterized by
extraordinary verticality and
light.

 Purpose gives rise to desired
properties, achieved by
solving technical problems.

Image:
https://upload.wikimedia.org/wikipedia/commons/

Principles: what?
• Principles, in

principle
• Principled principles
• Guiding principles
• Architecture

principles (yes, the
other kind)

 This description of Gothic architecture is interesting, in that, by
working within a small set of structural principles, the various
builders and artisans gained considerable freedom to innovate:

 “guilds of masons and builders carried from one diocese to
another their constantly increasing stores of constructive
knowledge. By a wise division of labor, each man wrought only
such parts as he was specially trained to undertake. The master-
builder—bishop, abbot, or mason—seems to have planned only
the general arrangement and scheme of the building, leaving the
precise form of each detail to be determined as the work
advanced, according to the skill and fancy of the artisan to whom it
was entrusted. Thus was produced that remarkable variety in unity
of the Gothic cathedrals; thus, also, those singular irregularities and
makeshifts, those discrepancies and alterations in the design, which
are found in every great work of medieval architecture. Gothic
architecture was constantly changing, attacking new problems or
devising new solutions of old ones. In this character of constant
flux and development it contrasts strongly with the classic styles, in
which the scheme and the principles were easily fixed and
remained substantially unchanged for centuries.”

“replaced the
construction system
based on thick load-
bearing walls in favour of
a structure - called a
skeletal system - that
freed itself of all
superfluous parts by
identifying the forces
acting on the interior - the
thrusts of the vaults and
the weight of the roof and
walls - so as to direct
them along
predetermined routes”

 Source: https://www.zeepedia.com/read.php?gothic_architecture_structural_principles_ribbed_vaulting
_history_of_architecture

 Architecture? Literally?? Seriously??
Well, what can we learn?

Just Enough Design Upfront

11

Gothic Architecture: Principles
 Key principles enabling
distinctive features:
• concentration of

strains upon isolated
points of support

• balanced thrusts

Principles: what?
• Principles, in

principle
• Principled principles
• Guiding principles
• Architecture

principles (yes, the
other kind)

 thrusts were as far as possible
resisted by counter-thrusts, and
the final resultant pressure was
transmitted by flying half-arches
across the intervening portions of
the structure to external
buttresses placed at convenient
points. This combination of flying
half-arches and buttresses is
called the flying-buttress.”

 “What really distinguished
[Gothic architecture] most
strikingly was the systematic
application of two principles [..].
The first of these was the
concentration of strains upon
isolated points of support, made
possible by the substitution of
groined [ribbed] for barrel vaults.
This led to a corresponding
concentration of the masses of
masonry at these points; the
building was constructed as if
upon legs (Fig. 105). The wall
became a mere filling-in between
the piers or buttresses, and in
time was, indeed, practically
suppressed, immense windows
filled with stained glass taking its
place.”

 Gothic architecture has distinctive features,
enabled by defining structural principles

Structural Principles

 Source:
https://www.zeepedia.com

 “The second distinctive principle
of Gothic architecture was that of
balanced thrusts. In Roman
buildings the thrust of the
vaulting was resisted wholly by
the inertia of mass in the
abutments. In Gothic architecture

12

Sociotechnical Design
 PRINCIPLE 1: COMPATIBILITY

 “The process of design must be compatible
with its objectives. [..]

 If the objective of design is a system capable
of self-modification, of adapting to change,
and of making the most use of the creative
capacities of the individual, then a
constructively participative organization is
needed.”

 — Albert Cherns

Principles: what?
• Principles, in

principle
• Principled principles
• Guiding principles
• Architecture:

building
• Architecture

principles: social
systems

More from Chern’s Principles
PRINCIPLE 2: MINIMAL CRITICAL SPECIFICATION

“This principle has 2 aspects, negative and
positive. The negative simply states that no more
should be specified than is absolutely essential;
the positive requires that we identify what is
essential. It is of wide application and implies the
minimal critical specification of tasks, the minimal
critical allocation of tasks to jobs or of jobs to
roles, and the specification of objectives with
minimal critical specification of methods of
obtaining them”

PRINCIPLE 7: SUPPORT CONGRUENCE

“This principle states that the systems of social
support should be designed so as to reinforce the
behaviors which the organization structure is
designed to elicit.”

 Source: Principles of Sociotechnical Design,
Albert Cherns, 1976,
https://journals.sagepub.com/doi/pdf/10.1177/0
01872677602900806

Transitional Organization – “an organisation in
transition is both different and more complex than
old or new, requiring careful planning and design. “

 Source: Principles of Sociotechnical Design
Revisited, Albert Cherns, 1987 (as conveyed by
Trond Hjortland)

"Principles of this kind are not offered as
blueprints for strict adherence. They are not
intended as design rules for mechanistic
application. Rather, they provide inputs to people
working in different roles and from different
disciplines who are engaged collaboratively in
design. They offer ideas for debate, providing
rhetorical devices through which detailed design
discussions can be opened up and elaborated.
Heuristic, rather than algorithmic, thinking is
required.”

— Chris Clegg, Sociotechnical principles for
system design

 Principles applied to organization design

13

Managing a Commons
 Elinor Ostrom developed principles for managing a
sustainable commons:

1. Define clear group boundaries.
2. Match rules governing use of common goods to

local needs and conditions.
3. Ensure that those affected by the rules can

participate in modifying the rules.
4. Make sure the rule-making rights of community

members are respected by outside authorities.
5. Develop a system, carried out by community

members, for monitoring members’ behavior.
6. Use graduated sanctions for rule violators.
7. Provide accessible, low-cost means for dispute

resolution.
8. Build responsibility for governing the common

resource in nested tiers from the lowest level up
to the entire interconnected system.

Jay Walljasper, IU

Principles: what?
• Principles, in

principle
• Principled principles
• Guiding principles
• Architecture:

building
• Architecture

principles: social
systems

 Elinor Ostrom studied how communities succeed or fail at
managing common pool (finite) resources such as grazing land,
forests and irrigation waters. She identified a set of principles
that work together to sustainably manage a commons.

 “Ostrom’s achievement effectively answers popular theories
about the “Tragedy of the Commons”, which has been
interpreted to mean that private property is the only means of
protecting finite resources from ruin or depletion. She has
documented in many places around the world how
communities devise ways to govern the commons to assure its
survival for their needs and future generations.”

Ostrom’s Principles

 Examples of principles in managing shared
resources, and governing a nation

 Source: Jay Walljasper, Elinor Ostrom’s 8 Principles for Managing
a Commons

 Recommended: Elinor Ostrom’s Nobel acceptance speech,
https://www.nobelprize.org/prizes/economic-
sciences/2009/ostrom/lecture/

The Book: Elinor Ostrom, Governing the Commons,
https://archive.org/details/governingthecommons/mode/2up

“the Constitution itself is a
set of principles for
building a very complex
dynamic structure that
should last for centuries"

― Alan Kay

14

Architecture Principles
 “a fundamental truth or
proposition serving as the
foundation for belief or action”

 ― OED

 “When something is causing
pain… do something! ”

 ― Architecture Principles,
HP OWEN Architecture

Source: Jacob Refstrup, sei.cmu.edu/splc2009

Principles: what?
• Principles, in

principle
• Principled principles
• Guiding principles
• Architecture

principles: building
• Architecture

principles: systems

Principles in Principle

 Principles help guide decisions to achieve
more the strategic outcomes we want.

From Eoin Woods (in InfoQ): we “can define a
software design principle as

a fundamental truth or proposition serving as the
foundation for action with regard to deciding on a
software system's workings.

The key point is that a principle is a clear statement
of intent that guides our design work.”

Jeff Eaton describes them this way:
“Principles are shared perspectives that affect
the decisions you make. Another way of saying
it might be, they’re lenses you filter your goals
through to determine what approaches are
reasonable or acceptable. Some of your
principles might be assumptions about the way
the world works. Others might be beliefs about
what matters and what doesn’t matter, or moral
and ethical lines that you’re not willing to cross,
no matter what the goal.
A good rule of thumb is that new goals
shouldn’t change your principles. If they do,
you’re not really describing principles, just
preferences. Consistent principles are one of the
key ways Doctrine provides continuity when
everything else is changing.”

 Sources: Eoin Woods,
https://www.infoq.com/articles/architectural-
design-principles/
 Jeff Eaton, The Doctrine Gap,
https://eaton.fyi/talks/the-doctrine-gap/
 Andrew Harmel-Law, Facilitating Software
Architecture, 2024

“Architectural principles are a means
of capturing key agreements
regarding how you collectively intend
to design your software systems.

— Andrew Harmel-Law

Doctrine: “a distinct set of beliefs
about how the work should be done”
Principles: “fundamental rules and
assumptions that guide our thinking”

— Jeff Eaton

15

 Principle name: memorable, clear name that indicates intent
 Statement: clear statement that will guide decisions; express a
technical strategy to achieve the strategic intent, address an
architectural challenge, or resolve architectural risk
 Driver: make the driver behind the principle clear
 Rationale: why we should follow the principle; identifies benefits we
get from following the principle (motivating why we have to change
what we do); provides traceability to strategy or system/architecture
objective the principle will help us meet
 Counter forces (counterarguments or alternatives considered):
provides a place to say we recognize what factors weigh against the
principle and what other approaches we might take (that other
people in our environment would argue for) and why we shouldn't
do that. One way to think about the counterargument/counter force,
is that it illuminates implications/things that need to be done to
ensure the principle is followed/viable in the
social/business/technical context. It provides a place to say "in the
face of dilemmas and tradeoffs and pressures we tend to do this, and
this is how it hurts us" and "we could alternatively take this other
approach, and this is how that would hurt us."
 Consequences: identify (positive and negative) side-effects
 Implications: what we have to do to as a result of and to facilitate
following the principle
 Scope/Applicability/Timeframe (optional, as relevant): identify (and
limit) where it is acceptable to deviate from the principle

Template for Architecture Principles

Architecture Principles
 An Architecture Principle
orients and aligns decisions
and actions to achieve
strategic outcomes.

 Well-stated principles make
it clear when decisions are
in line with the principle
and when they run counter
to the principle.

Principles: what?
• Principles, in

principle
• Principled principles
• Guiding principles
• Architecture

principles (building)
• Architecture

principles (systems)

“Architectural principles

ensure that some aspect
of design decisions meet
some aspect of the
requirements.
[..]
epitomize architecture's
function: to clearly
define the necessary
constraints on a
system's design without
prescriptively defining all
the design details.”

— Eoin Woods

 Source: Based on combination of
Paradigm Shift, Eoin Woods in https://www.infoq.com/articles/architectural-design-principles/ and our work

 Architecture principles are agreements we intend to
follow; they should be countably few and well-formed

16

Principles: Why?
 “The universal adoption of
several guiding principles
helped ensure the
conceptual integrity of a
plan whose many detailed
decisions were made by
many contributors.”

 — Fred P Brooks

1962
Principles: why?
• System integrity
• Strategic intent

 Principles help foster conceptual integrity

 In an earlier section, we explored conceptual integrity. In Mythical
Man Month, Fred Brooks notes that the lack of conceptual
integrity is evident when there are “many good but unco-
ordinated ideas.” A (small, so cognitively and organizationally
tractable) set of architecture principles can help co-ordinate and
align design decisions, to bend the system arc more towards
conceptual integrity.

Conceptual Integrity

17

Conceptual Integrity
 “When our ideas are cohesive
and in good relationship with
each other; when they are
supported by healthy, shared
patterns and principles; when
we push code changes that
improve the system’s ability to
serve its purpose, we create
conceptual integrity.”

 — Diana Montalion

Principles: why?
• System integrity
• Strategic intent

 Reminder (harks back to earlier section): Why
conceptual integrity and coherence matters

“When our concepts can’t
work together in harmony
to serve a purpose, our
software systems will
reflect that lack of integrity.
Integrity is the measure of
how well a system operates
as a whole.

— Diana Montalion

“Higher-order,
'superordinate' principles [..]
provide a basis for resolving
differences and building
agreement/alignment.”

— wikipedia

 In a chapter titled “Crafting Conceptual Integrity,” Diana
Montalion makes these points:

“Our ideas design our systems. [..] Whether we recognize it or not,
the coherence and interconnectedness of our concepts shape our
technological systems.

Concepts are our primary tool in systems design. Everything running
in production represents our concepts—the ideas we prioritized,
communicated, structured, and adapted with others, then crafted
into code. Concepts also structure the way we think about the
technology systems we encounter or inherit. If we want to change
what is running in production, we need to first change our concepts,
the way we think about what is running in production.” [..]

‘Fred Brooks describes the lack of conceptual integrity as a software
system with “many good but independent and uncoordinated
ideas.”’ [..]

“Here’s a metaphorical example: One group in an organization
wants a car. Another group wants a boat. Rather than resolve these
different perspectives at the systems level, both groups push their
new product. The engineers are told to build a carboat. Everyone
hates it; nobody wanted a carboat.

I’ve seen so many carboats. The two groups needed a systems-level
change, but there was no process for reconciling their needs into an
evolving systems design. Only a battle of wills that, from a systems
perspective, everybody lost”

Principles formulate cornerstone ideas that prioritize among
competing ideas, and bring cohesion to our design.

Bringing About Coherence in Design Ideas

18

Strategy
 “Architectural principles are a
means of capturing key
agreements regarding how you
collectively intend to design your
software systems. They are a
practical embodiment of your
organization’s tech strategy that
helps keep everyone’s decisions
aligned with the organization’s
overall direction.”

 — Andrew Harmel-Law

Principles: why?
• System integrity
• Strategic intent

 Principles interpret and make some
aspect of strategy more actionable

“Architectural principles are a
means to state your collectively
agreed commitments regarding
how you will design your
systems. As such they direct
your architectural practice and
evaluate your decision options.
Architectural principles helps
pick between various
approaches”

— Andrew Harmel-Law

 If we start with (in Rumelt’s terms) strategy as diagnosis
of the situation and guiding policy our shaping response,
then principles are a vehicle for expressing guiding
policy. That is, they can be expressions of engineering
strategy, translating from business strategy into how we
will enable that strategy by guiding technical decisions
and engineering approaches accordingly.

 From Andrew Harmel-Law: “Principles are shared
commitments, nudging all decisions in the direction
deemed appropriate for achieving the organization’s
vision and goals. This doesn’t mean all principles will
apply to all decisions”

Architecture Principles as Guiding Policy
(i.e. Expressions of Engineering Strategy)

19

Culture and Principles
Principles: why?
• System integrity
• Strategic intent Architecture Principles are

agreements that we reach and
share; they’re a mechanism to
express values in terms of
behavioral/decision guidance,
and are an important way to
influence the (sub)culture of
our teams*.

* And a vital way to do that organically, is by co-creating principles together

Principles Impact Design Culture

 Principles shape, ruling out what we don’t
want, and guiding towards what we do

Every principle we add to the architecture,
consumes cycles – creating and evolving the
principle statement, understanding and following
the principle, and governing the principle (to
catch misses and help ensure architectural
integrity) all costs attention.

We can view Architecture Principles as a lever to
help set and maintain direction/course, so long as
we don’t get overzealous and wash out their
impact by having so many that we create
cognitive overload and cause them to be ignored.

We will explore principles and Architecture
Principles further in this section.

A principle like “above all do no harm” directs our
attention and behavior to avoiding needless injury
to others whenever possible. Such principles are
normative – they express how things should or
ought to be, how to value them, which things are
good or bad, which decisions or actions are right
or wrong.

Architecture Principles are agreements that we
reach and share; they’re a mechanism to express
values in terms of behavioral/decision guidance,
and are an important way to influence the
(sub)culture of our teams. They are part of the
"left hand" work of guiding and shaping by
reducing the decision space, while still preserving
degrees of freedom and design discretion.

Inherently we're "giving shape to" the system,
influencing the form, aesthetics and properties of
the system.

The point is that a principle is worth
stating as an Architectural Principle
if it makes a difference to
decisions/behaviors that have
strategic impact.

20

Architectural Principles: TOGAF

Source: TOGAF https://pubs.opengroup.org/togaf-standard/adm-techniques/chap02.html

Principles: Show me!
• Off-the-shelf
• Some classics
• Recent? Relevant…
• Try it: dependency

isolation
• Try it: resilience
• Try it!

 Principle 7: Compliance with Law
 Statement: Enterprise information management processes comply with all
relevant laws, policies, and regulations.
 Rationale: Enterprise policy is to abide by laws, policies, and regulations. This
will not preclude business process improvements that lead to changes in
policies and regulations.
 Implications:
• The enterprise must be mindful to comply with laws, regulations, and external

policies regarding the collection, retention, and management of data

• Education and access to the rules
• Efficiency, need, and common sense are not the only drivers. Changes in the law

and changes in regulations may drive changes in our processes or applications.

Principle 6: Service Orientation
Statement: The architecture is based on a design of services which mirror
real-world business activities comprising the enterprise (or inter-enterprise)
business processes.
Rationale: Service orientation delivers enterprise agility and Boundaryless
Information Flow.
Implications:
• Service representation utilizes business descriptions to provide context (i.e.,

business process, goal, rule, policy, service interface, and service component) and
implements services using service orchestration

• Service orientation places unique requirements on the infrastructure, and
implementations should use open standards to realize interoperability and
location transparency

• Implementations are environment-specific; they are constrained or enabled by
context and must be described within that context

• Strong governance of service representation and implementation is required

• A "Litmus Test", which determines a "good service", is required

 Some examples of “off-the-shelf”
(existing, documented…) principles

 Source: Architecture Principles,
TOGAF,
https://pubs.opengroup.org/toga
f-standard/adm-
techniques/chap02.html#tag_02_
06_01_06

“Principles are general
rules and guidelines,
intended to be enduring
and seldom amended,
that inform and
support the way in
which an organization
sets about fulfilling its
mission.”

— TOGAF

21

Architectural Principles: Classics
 Principle: Over-all Optimization

 The objective of economic efficiency
was understood to imply minimizing
the cost of answers, not just the cost
of hardware. This meant repeated
consideration of the costs associated
with programming, compilation,
debugging, and maintenance, as well
as the obvious cost of machine time
for production computation.

1962
Principles: Show me!
• Off-the-shelf
• Some classics
• Recent? Relevant…
• Try it: dependency

isolation
• Try it: resilience
• Try it!

Source: https://amturing.acm.org/Buchholz_102636426.pdf

— Fred Brooks

1962

 Project Stretch Architecture Principles

 We know Fred Brooks from reading The Mythical Man Month. But it
is also worth reading Fred Brooks’ Architectural Philosophy chapter
in Project Stretch, for the history and for the lessons about
architectural design. The architectural principles Fred Books
describes are:

• Over-all cost minimization
• Power instead of Simplicity
• Generalized Features
• Specialized Equipment for Frequent Tasks
• Systematic Instruction Set
• Precision for New Operating Techniques

 Principle: Power Instead of Simplicity

 “The user was given power rather than simplicity whenever an equal
cost choice had to be made. It was recognized in the first place that
the new computer would have many highly sophisticated and
experienced users. It would have been presumptuous as well as
unwise for the computer designers to "protect" such users from
equipment complexities that might be useful for solving complex
problems. In the second place, the choice is asymmetric. Powerful
features can be ignored by a user who wishes to confine himself [sic]
to simple techniques. But if powerful features were not provided, the
skillful and motivated user could not wring their power from the
computer. “

 Some classic examples of principles:
Fred Brooks in 1962

 Source: Planning a Computer
System: Project Stretch, Ed
Werner Buchholz, 1962;
Chapter 2: Architectural
Philosophy, by Fred P Brooks

 Source: https://amturing.acm.org/
Buchholz_102636426.pdf

“Although the
discussion is in terms of
a specific computer, the
concepts discussed are
quite general. The
computer chosen is the
IBM 7030”

—Werner Buchholz

22

Classics: Unix Principles
 (i) Make each program do one
thing well. To do a new job,
build afresh rather than
complicate old programs by
adding new features.

 — Doug McIlroy

Source: UNIX Time-Sharing System: Foreword, 1978, https://archive.org/details/bstj57-6-1899/page/n3/mode/2up

 McIlroy called these maxims

 They are principles as
governing design ideas

Principles: Show me!
• Off-the-shelf
• Some classics
• Recent? Relevant…
• Try it: dependency

isolation
• Try it: resilience
• Try it!

1978

 (ii) Expect the output of every program to become the
input to another, as yet unknown, program. Don't
clutter output with extraneous information. Avoid
stringently columnar or binary input formats. Don't
insist on interactive input.

 (iii) Design and build software, even operating
systems, to be tried early, ideally within weeks. Don't
hesitate to throw away the clumsy parts and rebuild
them.

Principles Behind Unix Pipes, cont.

 Source: Doug McIlroy (1978),
https://archive.org/details/bstj57-6-1899/page/n3/

“This is the Unix philosophy: Write
programs that do one thing and do it
well. Write programs to work together.
Write programs to handle text
streams, because that is a universal
interface."

― Doug McIlroy
 Eric S. Raymond, Basics of the Unix Philosphy
https://cscie2x.dce.harvard.edu/hw/ch01s06.html

 Some classic examples of principles:
Unix Principles

23

VisiCalc Design Principles
 the Principle of Least Surprise

 “The goal was to give the user a conceptual
model which was unsurprising — it was called
the principle of least surprise. We were
illusionists synthesizing an experience. Our
model was the spreadsheet — a simple paper
grid that would be laid out on a table. The paper
grid provided an organizing metaphor for a
working with series of numbers.”

 — Bob Frankston

Source: Implementing VisiCalc, Bob Frankston, https://landley.net/history/mirror/apple2/implementingvisicalc.html

Principles: Show me!
• Off-the-shelf
• Some classics
• Recent? Relevant…
• Try it: dependency

isolation
• Try it: resilience
• Try it!

1978

 ‘In user interface design and software design, the
principle of least astonishment (POLA), also known
as principle of least surprise,[a] proposes that a
component of a system should behave in a way
that most users will expect it to behave, and
therefore not astonish or surprise users. The
following is a corollary of the principle: "If a
necessary feature has a high astonishment factor, it
may be necessary to redesign the feature."

 The principle has been in use in relation to
computer interaction since at least the 1970s.’

― wikipedia

Principle of Least Astonishment

 Source:
https://en.wikipedia.org/wiki/Principle_of_least_ast
onishment

“For those parts of the system
which cannot be adjusted to the
peculiarities of the user, the
designers of a systems
programming language should
obey the “Law of Least
Astonishment.” In short, this law
states that every construct in the
system should behave exactly as its
syntax suggests. Widely accepted
conventions should be followed
whenever possible, and exceptions
to previously established rules of the
language should be minimal."

― Bergeron et al, "Systems
Programming Languages“ in

Advances in Computers

 Some classic examples of principles: VisiCalc,
and principle of least surprise

24

Example Principles
 “In my team, we have a bit over a
dozen foundational (mostly
technical) core principles. We only
wrote them down a year ago but
they’ve existed for a decade. I call
them the constitution. It’s the
consensus framework within which
we evolve what we build.”

 — Clemens Vasters
SOFTWARE
ARCHITECTURESource: https://twitter.com/clemensv/status/1001129444633870336

Principles: Show me!
• Off-the-shelf
• Some classics
• Recent
• Try it: dependency

isolation
• Try it: resilience
• Try it!

 Clemens Vasters is Principal Architect, Messaging and Real-time
Intelligence Services, at Microsoft. A few years ago, he shared
some of his team’s principles, and the reasons for having them,
on twitter, including the following:

 “They're quite specific to the work we do. Let me share 3;
literally:

 1: The services implement open-standards based protocols as
primary form of communication. If a standards-based
alternative emerges for a proprietary capability, the proprietary
capability is phased out.

 2: Contract is honored. Protocol enhancements or additions do
not break existing functionality. Breaking protocol changes at
any level are announced with one year lead time before
eventual retirement and removal from the system.

 3: All servicing, update, and load balancing activities are
performed while keeping SLA

 That's the level of base consensus that we have defined. It sets
baseline rules. There are also some rules that clearly state what
we will not do.”

Examples of Core Principles

 More recent examples of principles:
Clements Vaster

” With a set of baseline
principles, effectively
setting guard rails that
nobody gets to cross, you
can eliminate lots of little
conflicts and with a well-
thought-out set of
boundaries, you can still
leave lots of room for
innovation.”

― Clemens Vasters

 Source: https://twitter.com/clemensv/status/1001133005593858048

25

Rudder API Principles
 4 principles

• Assess failure modes

• You are responsible to keep
promises made

• Give agency to your users

• And don’t forget any of them

 — François Armand

Source: https://speakerdeck.com/fanf42/devoxxfr-2021-systematic-error-management-in-application?slide=15

Principles: Show me!
• Off-the-shelf
• Some classics
• Recent
• Try it: dependency

isolation
• Try it: resilience
• Try it!

 “The robustness principle is a design guideline for software that
states: "be conservative in what you do, be liberal in what you
accept from others". It is often reworded as: "be conservative in
what you send, be liberal in what you accept". The principle is also
known as Postel's law, after Jon Postel, who used the wording in
an early specification of TCP.” (Wikipedia) (We might generalize it
to a Play Well With Others Principle.)

 Couterargument: it can make problem identification harder when
implementations tolerate deviations from a protocol specification,
but then some years later a less tolerant implementation rejects
the message. (Marshall Rose, via Wikipedia) Rose therefore
recommended "explicit consistency checks in a protocol ... even if
they impose implementation overhead“ (Wikipedia).

 “In 2023, Martin Thomson and David Schinazi argued that Postel's
robustness principle actually leads to a lack of robustness,
including security:

A flaw can become entrenched as a de facto standard. Any
implementation of the protocol is required to replicate the
aberrant behavior, or it is not interoperable. This is both a
consequence of tolerating the unexpected and a product of a
natural reluctance to avoid fatal error conditions. Ensuring
interoperability in this environment is often referred to as
aiming to be "bug-for-bug compatible". (Wikipedia)

More Examples of Principles

 More examples of principles as experience
distilled to guide and shape design decisions

"You aren't gonna need it"
(YAGNI) is a principle
which arose from extreme
programming (XP) that
states a programmer
should not add
functionality until deemed
necessary (Wikipedia)

Do the simplest thing that
could possibly work (Ward
Cunningham): start with
the most straightforward
solution to a problem,
rather than
overcomplicating it

26

 Eberhard Wolff argues against a technology independence
principle, and in doing so, gives us a nice example of a counter-
argument:

“The goal of technology independence usually leads to abstractions
and indirections being built to be independent of a concrete
implementation. These are often limited because they have to
implement the lowest common denominator of all possible
implementations. In addition, the concrete implementation might leak
through the abstraction, so that real independence is not achieved.
And finally, technology independence only pays off, when a new
technology is actually needed. Until then, you have to “pay” with
increased complexity. This is not necessarily the easier way. It is often
better to implement technology-dependent and make full use of the
technology. Only when a different technology needs to be used, the
system is migrated and the complexity cost is paid.”

“Good architecture
principles are
constructive, reasoned,
well-articulated,
testable and
significant.”

— Eoin Woods

Technology Independence: Counter-Argument

Example: Architecture Principles

Technical Neutrality

The architectural approach should work equally well with any
one of a candidate set of relevant technologies.

Increase acceptance. Selecting a single language or
component technology would require some application
developers to change their approach in order to use the
facility, potentially limiting acceptance and use.

We will have to carefully select the technologies to support.
Increased development time and support effort for us.

Selecting single dominant technologies to support will
reduce effort and simplify development and support.

Principle Name

Description

Rationale / Benefits

Implications

Counter argument

Common Clinical Context Manager Principles

Based on: Common Clinical Context Architecture Specification

 Source: https://www.innoq.com/en/blog/no-principles-software-
architecture/

 And example with a strong counterexample (see
slide and notes)

27

Principles: Guidelines
 The principle should help us
achieve something strategic or
key to the purpose and
integrity of the system

• properties of the system

• challenges we face
ENGINEERING
STRATEGY

 Guidelines

 Each architecture principle should

• clearly state a chosen direction
• a technical strategy to achieve the strategic intent

or architecturally significant system property,
address an architectural challenge, or resolve
significant risk

• can we state a principle that will guide subsequent
architecture/design decisions to achieve the
strategic intent/goal or challenge?

• be simply stated and understandable
• be stated so that you will know if the architecture has

the characteristics expressed by the principle
• have a counterargument
• should not be platitudes or general features that are

desirable regardless of the system
• be rationalized, stating why the principle is preferred,

drawing on business-related factors where possible
• And implications of adopting the principle should be

identified
• Be based on experience (if not our own, then that of

someone with relevant, trusted expertise and
experience)

Source: adapted from Tapscott and Caston

“Principles constitute Strategy
for achieving Quality goals in
Architecture.

If you ask the question of Why
to a Principle you (should) get
a set of Quality Attributes
back.”

— Ersin Er

 Integrity is not an accident

A principle is worth stating as an Architectural
Principle, if it makes a difference to
decisions/behaviors that have strategic impact.
We’re taking a stand and setting direction, given
some area that makes a difference to system
outcomes (system identity, key properties and
strategic goals).

28

Netflix: System Challenges

 Fit to context and
to purpose

Scale
Netflix services 130 million
subscribers from 190+
countries. The streaming
platform processes trillions of
events and petabytes worth of
data per day to support day to
day business needs. This
platform is expected to scale
out as subscribers continues to
grow.

Elasticity
Although majority of the
streams have fixed traffic
pattern, we have to design the
system to prepare for sudden
changes (i.e. spikes due to a
popular show coming online or
unexpected failure scenarios),
and be able to adapt and react
to them in an automated
fashion.

Source: https://netflixtechblog.com/keystone-real-time-
stream-processing-platform-a3ee651812a

(Context: 2018)

Challenges

More Properties Driving Netflix Design Decisions

 More challenges arising from Netflix system
properties (source: Netflix):

 2. Diverse Use-cases

 Keystone Routing Service: this service is
responsible for routing any events to managed
sink per user configuration. Each delivery route is
realized by an embarrassingly parallel stream
processing job. Users may define optional filter
and/or projection aggregations. Events are
eventually delivered to a storage sink for further
batch/stream processing with at-least-once
delivery semantics. Users may choose different
latency and duplicate tradeoffs.

 Stream Processing as a Service: SPaaS platform
has only been in production for about a year, yet
we have seen tremendous engineering interests,
as well as a wide variety of requirements. Below is
a summary of some common asks and tradeoffs.

 Job State: ranging from complete stateless
parallel processing to jobs requiring 10s of TB
large local states.

 Job Complexity: ranging from embarrassingly
parallel jobs with all operators chained together
to very complex job DAG with multiple shuffling
stages and complex sessionization logic.

 Windows/Sessions: window size ranging from
within a few second (i.e. to capture transaction
start/end event) to hours long custom user
behavior session windows.

 Traffic pattern: traffic pattern varies significantly
depending on each use case. Traffic can be bursty
or consistent at GB/sec level.

 Failure recovery: some use cases require low
failure recovery latency at seconds level, this
becomes much more challenging when job both
holds large state and involves shuffling.

 Backfill & rewind: some jobs require replay of
data either from a batch source or rewind from a
previous checkpoint.

 More at: https://netflixtechblog.com/keystone-
real-time-stream-processing-platform-
a3ee651812a

29

Netflix: Architecture Principle
Principle: Failure as a First Class Citizen

Description: Failure is a norm in any large scale
distributed system, especially in the cloud
environment. Any properly designed cloud-native
system should treat failures as a first class citizen.

Rationale: Assume unreliable network

Implications:
• Trust underlying runtime infrastructure, but design

automatic healing capabilities
• Enforce job level isolation for multi-tenants support
• Reduce blast radius when failure arise
• Design for automatic reconciliation if any

components drifts from desired state or even if
disaster failure occurs

• Handle & propagate back pressure correctly

Source: https://netflixtechblog.com/keystone-real-time-stream-processing-
platform-a3ee651812a

Guiding policy

Netflix Principles

 The Failure as a First Class Citizen Principle has more implications than listed
there. What else comes to mind (especially when we view the system as a
sociotechnical system)?

CounterArgument

 The Netflix team doesn’t state a counterargument, but often the counter is the
usual or de facto way things are done. In this case, counterposition could be
to instead focus on preventing failures, rather than assuming that failures will
happen and investing in our responses to them.

30

Principle Examples: Market Facing

From Strategy Masterclass: Ksenia, Webs, Paula, Louise, Barb

Preserve the Dignity of our CustomersPrinciple Name
Ensure that customers do not experience shame in
food insecurity and that they feel supported

Description

Builds community? Broadens the pool of users.
Creates safety
Encourages use because there is no negative
connotation

Rationale /
Benefits

May need to manage perceptions of 'handouts' or
those who would take advantage. Ensure that privacy
and security, and data privacy is addressed.

Implications

Put more energy into encouraging safe participation
than into 'policing' participation

Counter argument

From Strategy Masterclass: Erica, Erica, NH, Peter, Sean, Daniel

From Strategy Masterclass: Al, André, Burkhard, Hibri, Peter, Ralph

 Principles apply in other design areas

31

Principle Examples

 Guidelines
 In Chapter 10 of Facilitating Software Architecture, Andrew Harmel-Law
offers guidance on a collective workshop approach to creating principles.
He positions principles as follows:

 “Architectural principles are a means of capturing key agreements
regarding how you collectively intend to design your software systems.
They are a practical embodiment of your organization’s tech strategy that
helps keep everyone’s decisions aligned with the organization’s overall
direction. They are another means to articulate your minimum viable
agreement described in the previous chapter.

 A set of principles transforms the organization’s abstract vision and goals
into a form that can be used to direct software development and make
concrete decisions. Targeted and explicit architectural principles are an
incredibly powerful tool, but they are (in my experience at least) rarely
conceived and deployed effectively.

 Failure to take advantage of Architectural Principles is problematic in any
approach, but in a decentralized feedback-centric world like ours having
effective principles becomes essential. This is because they are superb
at aligning decisions effectively without the need for imposing any form of
hierarchical or outside control. Poorly conceived principles don’t just fail
to offer this collective commitment to alignment, they actually get in the
way, undermining the ability of the advice process to build trust, enable
learning, and deliver high-quality decentralized decisions at a pace that
factors in feedback.

 The best way to capture architectural principles and ensure that they
align with your organization’s goals and vision is to source them from a
broad range of people including all teams.”

“Architectural principles
are a means to state
your collectively agreed
commitments regarding
how you will design your
systems.”
— Andrew Harmel-Law

32

Principles: Dependencies
 If we have identified
dependency management as a
key strategic challenge (see our
Wardley Map), what principles
might we explore?

ENGINEERING
STRATEGY

Principles: Show me!
• Off-the-shelf
• Some classics
• Recent
• Try it: dependency

isolation
• Try it: resilience
• Try it!

https://xkcd.com/2347/

 Dependency Management Principles

• Tie your horse to a post, not another horse (The Stable
Dependencies Principle: modules may not depend on less
stable ones)

• Isolate dependencies. Which dependencies? Identify
supply chain risks.

 Ideas for principles: dependency
management

 Source: The Stable Dependencies Principle How stability can reduce the cost of change, Christiaan
Fouché https://chrisfouche.com/the-stable-dependencies-principle

33

Principles: Resilience
 If we have identified the
resilience of our system as a
key strategic challenge, what
principles might we explore?

ENGINEERING
STRATEGY

Principles: Show me!
• Off-the-shelf
• Some classics
• Recent
• Try it: dependency

isolation
• Try it: resilience
• Try it!

 Resilience Principles

 Maintain diversity and redundancy

 Manage connectivity

 Foster adaptive capacity

 Encourage learning

 Cluster of Resilience Principles

 Looking back at, for example, Ostrom’s Principles for
Managing a Commons, we might note that small clusters of
well-chosen principles can (and need to) work together to
provide direction towards the outcome we seek. What
resilience principles might work together, to impact the
system design, and our approach to system design (including
code), operations and engineering practice, and engineering
management?

 Ideas for resilience principles

34

Principles: Team Exercise
1. list 4 or 5 challenges that we will face

building this system (consider past
experience, look at desired qualities
indicated on stakeholder profiles,
challenges on context map, …)

2. list 4 or 5 ideas for principles (that will
help us address challenges)

3. pick one of the ideas for principles, and
express the principle (on template)

ENGINEERING
STRATEGY

Principles: Show me!
• Off-the-shelf
• Some classics
• Recent
• Try it: dependency

isolation
• Try it: resilience
• Try it!

 Principles Exercise

 Reminder: it can be helpful to work individually for the first
few minutes, then share ideas, then work together as a team
on a principle.

 Now try on our case study

 Step Back and Reflect

 Reflect and share insights and experiences creating and using
principles. What’s been useful? Hard? What helped?

35

 We recommend the Duarte material on slidedocs® in addition to the
template; much that is valuable there.

“Act always so as to
increase the number
of choices.’
— Heinz von Foerster

Duarte Slidedocs®

 Shoulders we stand on

 We have consciously brought various pioneers and contemporaries
visibly into our materials for two reasons:

 i. to acknowledge and celebrate the extent to which we are because of
others (Abeba Birhane). It is a small way to bring into the room, so to
speak, with us people whose insights and work has influenced us, and
integrated with our experiences, other reading and conversations, and
more, to build what we understand and can share.

 ii. to recommend to you wonderful work you may want follow up on,
and also to draw in our contemporaries who are sharing insights that
you too may find useful, and want to follow them on twitter, etc.

Quotes and Photos

Attribution
 The format for these notes is adapted from
a template from Nancy Duarte and team.

 For more:

 https://www.duarte.com/slidedocs/

36

Stay in Touch
 Ruth Malan: find me on
LinkedIn, Bluesky and
Mastodon
 Web: ruthmalan.com

 Masterclasses and
Workshops
• System Design and

Architecture, May 12-14
and 19-21, 2025

• Technical Leadership,
May 8 and 15, 2025

“What we care about is the productive
life, and the first test of the productive

power of the collective life is its
nourishment of the individual. The

second test is whether the contributions
of individuals can be fruitfully united”

— Mary Parker Follett

Attribution — Please give appropriate credit if you quote from this book. You may do so in any
reasonable manner, to a reasonable extent, respecting the work it takes to create something like this.

